
/home/ted/awk_stuff/awk.language.summary
Prepared, on the basis ofThe AWK Programming Languageby Aho, Kernighan & Weinberger,
by Ted Harding (original 01/12/2001; mods: 20/08/2002, 07/10/2004, 24/08/2006, 07/06/2007, 17/07/2007,
19/04/2008, 09/09/2010)

The AWK Crib

Basic statement
pattern{ action}

or function definition

Pattern Summary

Summary of Patterns
1. BEGIN { statements}

Thestatementsare executed once, before any input has been read.
BEGIN does not combine with any other pattern, anddoesrequire an action.

2. END { statements}
Thestatementsare executed once, after all input has been read.
ENDdoes not combine with any other pattern, anddoesrequire an action.

3. expression{ statements}
The statementsare executed at each input line where theexpressionis true (non-zero or non-
null).

4. / regular expression/ { statements}
Thestatementsare executed at each input line matched by theregular expression.

!/ regular expression/ { statements}
Thestatementsare executed at each input linenot matched by theregular expression.

5. compound pattern{ statements}
A compound patterncombines expressions with&& (AND), || (OR), ! (NOT) and parentheses;
thestatementsare executed at each input line where thecompound patternis true.

6. pattern1 , pattern2 { statements}
A range pattern matches each input line, starting from a line matched bypattern1 and ending
with the next line matched bypattern2 (both inclusive); the statementsare executed at each
such line.
A range pattern can not be part of any other pattern.

7. { statements}
Themissing pattern matches every input line (including blank lines), so thestatementswill be
executed for every line.

8. pattern
A pattern with no explicit { action } has an implicit action which simply outputs the whole of
any input line matched bypattern.

Expressions as Patterns
Any expressioncan be used as apattern. If it evaluates tonon-zero or non-null for a line, then the line
matches and any actions are executed.

Expressions and Operators
Any expressioncan be used asoperand for anyoperator.

-2-

Expressions and Operators

Expressions

1. Theprimary expressions are
numeric and string constants;
variables;
fields;
function calls;
array elements.

Operators

2. Thefollowing operators combine expressions
the assignment operators = += - = * = / = %= ˆ =

the conditional expressions operator? : cond ? expr1 : expr2
the logical operators || && !

the substring matching operators ˜ ! ˜

the relational operators < <= == ! = >= >

the string concatenation operator blank

the arithmetic operators + - * / % ˆ

unary arithmetic + -

prefix and suffix increment and decrement operators ++ --

parentheses for grouping

String-Matching Patterns

String-Matching Patterns

1. / regexpr/
Matches whenever the current line contains asubstring matched byregexpr.

2. !/ regexpr/
Matches whenever the current linedoes notcontain asubstring matched byregexpr.

3. expression ˜ regexpr
expression ˜ expression2

Matches whenever the string value ofexpressioncontains a substring matched byregexpr, or
equal to the string value ofexpression2.

4. expression !˜ regexpr
expression !˜ expression2

Matches whenever the string value ofexpressiondoes not contain a substring matched by
regexpr, or equal to the string value ofexpression2.

-3-

Regular Expressions

Metacharacters
\ ˆ . [] | () * + ?

Expression Matches

c the non-metacharacterc
\ c escape sequence, or literalc

\b backspace
\f formfeed
\n newline
\r carriage return
\t tab
\ ddd octal valueddd
\ c any other characterc literally

ˆ beginning of string
$ end of string
. any character
[c1c2. . .] any character inc1c2. . .
[ˆ c1c2. . .] any character not inc1c2. . .
[c1 − c2] any character in the rangec1 − c2
[ˆ c1 − c2] any character not in the rangec1 − c2
r1| r2 any string matched byr1 or by r2
(r1)(r2) any string xy wherer1 matchesx andr2 matchesy
(r)* zero or more consecutive strings matched byr
(r)+ one or more consecutive strings matched byr
(r)? zero or one string matched byr
(r) any string matched byr

Actions

An actionconsists of one or morestatementsseparated by newlines or semicolons.

Action Statements

1. expression
2. print expression-list

print(expression-list)
3. printf format, expression-list

printf(format, expression-list)
4. if (expression) statement
5. if (expression) statementelse statement [else associated with most recent unmatchedif]
6. while (expression) statement
7. for (expression; expression; expression) statement
8. for (variable in array) statement
9. do statementwhile (expression)

10. break

11. continue

12. next

13. exit

14. exit expression
15. { statements}

-4-

User-defined Variables
Named user-defined variables come into existence on being mentioned for the first time.They hav e
default null initial values of"" (in a string context) or0 (in a numerical context). Variables can also
be defined in the command-line.

Variables acquire values by assignment. The value of a string variable is automatically converted to
numeric type (if this makes sense†) if the variable is used in a numerical context. The value of a
numeric variable is automatically converted to string type‡ if the variable is used in a string context.
† If not, the numeric value used is0, the default numeric null initial value.
E.g.{i="hello";printf("%5.5f ",i); print i} → 0.00000 hello

The numeric value of a string is the value of its longest initial numerically compatible sequence,
e.g. "0.12abc" → "0.12" → 0.12 , "abc" → "" → 0, 1E2G3H4" → "1E2" → 100

‡ The string value is its representation according toOFMT(default"%.6g"),
e.g.100/3 → "33.3333" , 100000000/3 → "3.33333e+07" .

Functions uselocal copies of variables named in their argument lists. All other variables (including
variables defined within functions) areglobal; variables arising within a function which are intended
to be local can be so coerced by being named (with default null values) in the argument list of the
function definition.

Built-in Variables

Variable Meaning Default

ARGC number of command-line arguments
ARGV array of command-line arguments
ARGV[i] i th command-line argument
FILENAME name of current input file
FNR current record number in current file
FS field separator (character or string) " " ‡
NF number of fields in current record
NR number of records read so far
OFMT output format for numbers "%.6g" (i.e. 6 significant figures)
OFS output field separator " "

ORS output record separator "\n"

RLENGTH length of string matched bymatch()

RS input record separator "\n"

RSTART start of string matched bymatch()

SUBSEP subscript separator (ctrl-\ = ˆ\)† "\034"
† For theawk ‘hack’ of multidimensional arrays ‡ Multiple FS=" …" treated as one" " ;

(See the A-K-W book pp. 52–3, and below) for FS="[][] …" , each" " is significant.
StringFS is treated as regular expression
(leftmost longest non-overlapping match).
FS="[][]*|[\t]|[;]|[,]" will cause
one or more spaces, orTAB, or ";" , or "," ,
to be recognised as a field separator.
FS can be a string, e.g.")(" is set up by
FS="[)][(]"

Field Variables

Variable Meaning Default

$0 The whole line
$1, $2, … The fields of the line
$(i) Field i (dynamic index)
$var E.g.{Fno=25 ; print($Fno)} (dynamic index)
$(NF+1) = ... Defines an additional field; incrementsNF

-5-

Functions
There are several built-in functions. Theuser may define any number ofuser-definedfunctions.

User-defined Functions
Such a function is defined by afunction definitionstatement (declaration) of the form

function name (parameter-list) { statements}

which may occur anywhere apattern-actionstatement can. See above for the distinction between
local andglobal variables. Example:

function log10(x) { r eturn log(x)/log(10) }

In calling a function there must be no space between the name and the opening parenthesis of the
parameter-list (a space is permissible in the definition).

Functions may be defined recursively. Internal variables used in recursive functions need to appear in
the parameter list of the function declaration (so that they will be local at every depth; otherwise they
areglobaland the function will misbehave).

Built-in Arithmetic Functions

FUNCTION VALUE RETURNED

atan2(y, x) arctangent ofy ⁄ x in the range−π to π (radians)
cos(x) cosine ofx (x in radians)
exp(x) exponential function ofx, ex

int(x) integer part ofx; truncated towards 0 whenx > 0
log(x) natural (basee) logarithm ofx
rand() random number† r , uniform real on 0≤ r < 1
sin(x) sine ofx (x in radians)
sqrt(x) square root ofx
srand(x) x (unsigned integer) is new seed† for rand()

† rand() starts, by default, from the same value (1) every timeawk is run.
srand(x) startsrand() from the valuex; srand() setsx from the system clock.
srand returns thecurrent(pre-call) seed; to get (for re-use) the seed set bysrand() do
srand(); i=srand(); print i; srand(i);

Built-in String Functions

FUNCTION ACTION, AND VALUE RETURNED

gsub(r , s) substitutes for regexpr globally in$0;
return number of substitutions made

gsub (r , s, t) substitutes for regexpr globally in stringt;
return number of substitutions made

index(s, t) return first position of stringt in s, or 0 if not present
length(s) return number of characters ins
match(s, r) test whethers contains a substring matched by regexpr ;

return index or 0; setsRSTARTandRLENGTH(leftmost longest†)
e.g.match($0,/[0-9]+\.htm/)

split(s, A) split s into arrayA on FS;‡

return number of fields
split(s, A, fs) split s into arrayA on field separatorfs;‡

return number of fields
sprintf(fmt, expr-list) return expr-listformatted according tofmt
sub(r , s) substitutes for leftmost longest† substring of$0 matched by regexpr ;

return number of substitutions made
sub(r , s, t) substitutes for leftmost longest† substring oft matched by regexpr ;

return number of substitutions made
substr(s, p) return last part ofs starting at positionp
substr(s, p, n) return substring ofs of lengthn starting at positionp

† First the leftmost match is found; then it is extended as far as possible
‡ Index values inA are integers1,2, …; Element valuesA[i] are substrings ofs

-6-

Arrays
Arrays areassociative arrayswhose subscripts (index values) arestrings. Like variables, array
elements come into existence by being mentioned, and have default null values. Arrayele-
ments are assigned values by

array[subscript] = expression

The construct

for (i in arrayname) { … }

assigns successively to i the string-valued subscripts of the elements of the array whose name
is arrayname. Example (a completeawk program):

BEGIN{ common_name["Clupea harengus"] = "herring" ;

common_name["Anguilla anguilla"] = "European eel" ;

common_name["Gadus morhua"] = "cod" ;

common_name["Salmo salar"] = "Atlantic salmon" ;

} ;

{ f or (bio_name in common_name)

{ p rint bio_name " is commonly called the " common_name[bio_name] }

}

whose output will be:

Clupea harengus is commonly called the herring

Anguilla anguilla is commonly called the European eel

Gadus morhua is commonly called the cod

Salmo salar is commonly called the Atlantic salmon

The order in which the index values are assigned toi is not necessarily predictable, especially
if new elements are added to an existing array.

The expression

subscriptin A

has value1 if A[subscript] exists,0 otherwise, and does not createA[subscript] if it does not
exist, as in

if ("Leuciscus rutilus" in common_name)

The statement

delete arrayname[subscript]

deletes the specified element from the array;for (i in A) delete A[i] deletes all ele-
ments ofA.

The subscript of an array can have a “pseudo-multidimensional” form, andawk performs an
internal concatenation of a comma-separated index list to generate an internally synthesised
string-valued subscript: ifi = 1, j = 5,k = 2, then the statement

A[i, j, k] = "one-five-two"

generates the array element

A["1•5•2"] = "one-five-two"

where “• ” stands for the default value \034 of SUBSEP, the subscript-component separator.
Such a subscript value is accessible (e.g. by ‘for i in A ’), and can be decomposed into its
components using thesplit function:

{A[1, 5, 2] = "one-five-two"}; {for (i in A) {print i} } → 1•5•2

{for (i in A) {split(i,B,SUBSEP);for(j in B) print B[j]} } → 1

5

2

-7-

Operation
It is important to note thatawk alwaysoperates by applying its program to each input line, and
generating appropriate output each time.If no input lines are supplied, nothing will happen.
For example, let{...} denote the above awk program for fish names.Then the command line

awk ’{...}’

will apparently hang. In fact,awk is waiting for input lines and will generate appropriate out-
put for any lines which are matched (as, in this case, all are). Therefore, nothing will happen
unlessReturn is pressed, but the above output will be generated every time it is pressed; press
ˆD (EOF) to stop it.

